- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Anirudh, R. (1)
-
Garcia, Karolina (1)
-
Kaasinen, Melanie (1)
-
Narayanan, Desika (1)
-
Popping, Gergö (1)
-
Sutherland, Sagan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We presentslick(the Scalable Line Intensity Computation Kit), a software package that calculates realistic CO, [Ci], and [Cii] luminosities for clouds and galaxies formed in hydrodynamic simulations. Built on the radiative transfer codedespotic,slickcomputes the thermal, radiative, and statistical equilibrium in concentric zones of model clouds, based on their physical properties and individual environments. We validate our results by applyingslickto the high-resolution run of theSimbasimulations, testing the derived luminosities against empirical and theoretical/analytic relations. To simulate the line emission from a universe of emitting clouds, we have incorporated random forest machine learning (ML) methods into our approach, allowing us to predict cosmologically evolving properties of CO, [Ci], and [Cii] emission from galaxies such as luminosity functions. We tested this model in 100,000 gas particles, and 2500 galaxies, reaching an average accuracy of ∼99.8% for all lines. Finally, we present the first model light cones created with realistic and ML-predicted CO, [Ci], and [Cii] luminosities in cosmological hydrodynamical simulations, fromz= 0 toz= 10.more » « less
An official website of the United States government
